|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectpal.math.MultivariateMinimum
pal.math.DifferentialEvolution
global minimization of a real-valued function of several variables without using derivatives using a genetic algorithm (Differential Evolution)
Nested Class Summary |
Nested classes inherited from class pal.math.MultivariateMinimum |
MultivariateMinimum.Factory |
Field Summary | |
double |
CR
Crossing over factor (default 0.9) |
double |
F
weight factor (default 0.7) |
int |
prin
variable controlling print out, default value = 0 (0 -> no output, 1 -> print final value, 2 -> detailed map of optimization process) |
Fields inherited from class pal.math.MultivariateMinimum |
maxFun, numFun, numFuncStops |
Constructor Summary | |
DifferentialEvolution(int dim)
construct DE optimization modul (population size is selected automatically) |
|
DifferentialEvolution(int dim,
int popSize)
construct optimization modul |
Method Summary | |
void |
optimize(MultivariateFunction func,
double[] xvec,
double tolfx,
double tolx)
The actual optimization routine (needs to be implemented in a subclass of MultivariateMinimum). |
void |
optimize(MultivariateFunction func,
double[] xvec,
double tolfx,
double tolx,
MinimiserMonitor monitor)
The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified. |
Methods inherited from class pal.math.MultivariateMinimum |
copy, findMinimum, findMinimum, findMinimum, stopCondition |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
public double F
public double CR
public int prin
Constructor Detail |
public DifferentialEvolution(int dim)
DE web page: http://www.icsi.berkeley.edu/~storn/code.html
dim
- dimension of optimization vectorpublic DifferentialEvolution(int dim, int popSize)
dim
- dimension of optimization vectorpopSize
- population sizeMethod Detail |
public void optimize(MultivariateFunction func, double[] xvec, double tolfx, double tolx)
MultivariateMinimum
optimize
in class MultivariateMinimum
func
- multivariate functionxvec
- initial guesses for the minimum
(contains the location of the minimum on return)tolfx
- absolute tolerance of function valuetolx
- absolute tolerance of each parameterpublic void optimize(MultivariateFunction func, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor)
MultivariateMinimum
optimize
in class MultivariateMinimum
func
- multivariate functionxvec
- initial guesses for the minimum
(contains the location of the minimum on return)tolfx
- absolute tolerance of function valuetolx
- absolute tolerance of each parametermonitor
- A monitor object that receives information about the minimising process (for display purposes)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |