DOLLOP

DOLLOP carries out the Dollo and polymorphism parsimony methods. The Dollo parsimony method was first suggested in print in verbal form by Le Quesne (1974) and was first well-specified by Farris (1977). The method is named after Louis Dollo since he was one of the first to assert that in evolution it is harder to gain a complex feature than to lose it. The algorithm explains the presence of the state 1 by allowing up to one forward change 0-->1 and as many reversions 1-->0 as are necessary to explain the pattern of states seen. The program attempts to minimize the number of 1-->0 reversions necessary. Part of Phylip.

Manual: http://evolution.genetics.washington.edu/phylip/doc/dollop.html

TEST DATA SET

     5    6
Alpha     110110
Beta      110000
Gamma     100110
Delta     001001
Epsilon   001110

 

TEST SET OUTPUT (with all numerical options on)

 
Dollo and polymorphism parsimony algorithm, version 3.6
 
Dollo parsimony method
 
 5 species,   6  characters
 
 
Name         Characters
----         ----------
 
Alpha        11011 0
Beta         11000 0
Gamma        10011 0
Delta        00100 1
Epsilon      00111 0
 
 
 
One most parsimonious tree found:
 
 
 
 
  +-----------Delta     
--3  
  !  +--------Epsilon   
  +--4  
     !  +-----Gamma     
     +--2  
        !  +--Beta      
        +--1  
           +--Alpha     
 
 
requires a total of      3.000
 
 reversions in each character:
         0   1   2   3   4   5   6   7   8   9
     *-----------------------------------------
    0!       0   0   1   1   1   0            
 
From    To     Any Steps?    State at upper node
                             ( . means same as in the node below it on tree)
 
root      3         yes    ..1.. .
  3    Delta        yes    ..... 1
  3       4         yes    ...11 .
  4    Epsilon      no     ..... .
  4       2         yes    1.0.. .
  2    Gamma        no     ..... .
  2       1         yes    .1... .
  1    Beta         yes    ...00 .
  1    Alpha        no     ..... .